If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4.9Y^2+5Y-760
We move all terms to the left:
-(4.9Y^2+5Y-760)=0
We get rid of parentheses
-4.9Y^2-5Y+760=0
a = -4.9; b = -5; c = +760;
Δ = b2-4ac
Δ = -52-4·(-4.9)·760
Δ = 14921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14921}=\sqrt{1*14921}=\sqrt{1}*\sqrt{14921}=1\sqrt{14921}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1\sqrt{14921}}{2*-4.9}=\frac{5-1\sqrt{14921}}{-9.8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1\sqrt{14921}}{2*-4.9}=\frac{5+1\sqrt{14921}}{-9.8} $
| 3x-(*2x=5)=2 | | n-3=(n+3)/2 | | 10+12x=-18-2x | | 0.07p=5.6 | | 8p-12;p=4 | | (2p+10)/2=2 | | 12p^2-6p-6=0 | | 11g–5g=18 | | n-3=n+3/2 | | 5-t/3=12 | | 29=4y-11 | | 2v=10/9 | | 10+12x=18-2x | | 5x+28=160 | | 6x=8x+42 | | 7(4+4r)=84 | | 6a-12=2(a+2) | | Y=4.9x^2+5x+760 | | 6(3a+1)-30=3(2a-4 | | 8(b+4)-7b=4b+4(1+b) | | 4(x-4)=7x-7-3x | | 12x2-3x-9=0 | | 4w2–37w+9=0 | | -3z=8-2z | | X-12x=-44 | | 6x+43=79 | | x2-56=10x | | 16-4*(9-3*(2x-5))=-4*(3-6x) | | 5/6x-3=1/6x+2/3 | | n2+40n=0 | | -8(6n-3)=264 | | s2+22s=0 |